DISCLAIMER: This data in this section is fictitious and does not, in any way, represent any of the programs at Gallaudet University. This information is intended only as examples.

It’s hard to understand data in bulk. Data only becomes information that you can use to make decisions after being processed. Thus, it’s best if the data is summarized in the results. The benefit of summarization is that it not only reduces the amount of data needed to digest, but it increases the ability to interpret the data.

Tips to Summarize Data

Organize the Data

If there is a small amount of data, it can be prepared by hand. Otherwise, the results should be entered into a computer for easier summarizing and analyzing.

If the assessment tool uses descriptive instead of numeric categories, it will be necessary to change the ratings or responses into numbers (coding) before entering them into the computer. It will make them easier to summarize and analyze.


Exemplary = 4

Can express why psychology is a science = C1

Notes on coding. Keep careful notes explaining the meaning of each code to minimize confusion. They will be invaluable if anyone decides to repeat the assessment later.

Clean the Data

Depending on the data collection, a cleaning up will be needed to make sure it is appropriate and accurate prior to being summarized and analyzed.

For example, assessment results from a paper-based survey or rubric may include some unclear or inaccurate responses that you will need to be decided about (e.g., correcting or eliminating data from the sample).

Some types of responses that may need to be address before summarizing data:

  • Inapplicable responses (e.g., males students answered questions in section for female students only)
  • Inappropriate multiple responses (e.g., two answers checked for one non-multiple choice question)
  • Responses outside given category: (e.g., student wrote in answer because they didn’t like choices provided)
  • “Other” responses that really aren’t (i.e., student checked “Other — Please Specify” but their comment matched one of the answers provided)

Make a List and check it twice

  • List the raw data
  • Remove identifying information such as names to ensure confidentiality
  • Compare the list to the source information. This will help in finding and correcting any errors.

Once the list is accurate, proceed to the next step.

Criteria from Rubric

Student C1 C2 C3
1. 1 2 2
2. 4 4 4
3. 4 3 3
4. 4 4 4
5. 3 4 3
6. 3 4 2
7. 1 3 2
8. 2 3 2
9. 1 2 2
10. 3 4 4
11. 4 4 4
12. 1 1 1
13. 3 4 3
14. 4 4 4
15. 1 1 2
16. 2 2 2
17. 4 4 4
18. 3 3 2

4= Exemplary 3 = Good 2 = Minimally Acceptable 1 = Unacceptable

  • Tally the results or responses to get a quick picture

Example: Tally of raw data from list above

Criteria Exemplary
Minimally Acceptable
Can express why psychology is a science 6 5 2 5
Can apply psychological theory to a real life event 9 4 3 2
Can explain one aspect of human behavior using multiple psychological theories 6 3 8 1

Visualize information in a way most useful to you. Chart Your Results in a way that is meaningful.

It is often helpful to use tables, line graphs or bar charts to get a clear look at the big picture. It depends on the kind of questions the assessments are needed to answer. (see two examples below showing the same data summarized two ways).

  • AVOID complex statistics
  • Use round numbers
  • Create simple charts, graphs, lists (They are easier to read and understand.)
  • Sort results from highest to lowest [optional]
  • Percentages may be more meaningful than averages
  • Show trend data if assessing over time

Example 1: Table using data from tally above with percentages added, column with total percentage of students who were successful in the program (adding Exemplary + Good + Minimally Acceptable).

N=18 Target=78%

Criteria Percent of Successful Students Exemplary
Minimally Acceptable
Can express why psychology is a science 72% 6 5 2 5
Can apply psychological theory to a real life event 89% 9 4 3 2
Can explain one aspect of human behavior using multiple psychological theories 94% 6 3 8 1

Example 2: Line chart using data from tally above with target the program hopes to achieve.

Bar Chart of results

Find the Story in the Data [Analyze Data]. Data Summaries alone cannot fully communicate your message.

Data summaries make it easier for you to see meaning but by themselves they don’t reveal the whole story. You also need to include an explicit narrative interpretation of what you saw in the data…and what you plan to do about it.

  • What do the data summaries reveal about students’ learning? (identify meaningful information)
  • What are you going to do about what you have learned?
  • When, where, and how are you going to do it?

Additional Resource: More examples of summarized data are in the attached document, including a thematic analysis of qualitative data.

Contact Us


College Hall 410A

(202) 559-5370



Select what best describes your relationship to Gallaudet University so we can effectively route your email.
By submitting this form, I opt in to receive select information and deaf resources from Gallaudet University via email.
This field is for validation purposes and should be left unchanged.